Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(Propan-2-yloxy)-1,2-benzothiazole 1.1-dioxide

Muneeb Hayat Khan,^a Islam Ullah Khan,^a Shumaila Younas Mughal^a and Mehmet Akkurt^{b*}

^aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 6 January 2012; accepted 19 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 18.6.

In the title compound, $C_{10}H_{11}NO_3S$, the benzisothiazole ring system is almost planar [maximum deviation = 0.030(1) Å for the S atom]. The isopropoxy group is almost in the plane of the benzisothiazole ring system $[N-C-O-C=4.5 (2)^{\circ}]$ with one of its methyl groups in an antiperiplanar orientation relative to the benzisothiazole ring system $[C-C-O-C = -162.0 (2)^{\circ}]$.

Related literature

For related structures, see: Siddiqui et al. (2007, 2008); Bassin et al. (2011); Arshad et al. (2009a,b).

Experimental

Crystal data C10H11NO3S

 $M_r = 225.27$

organic compounds

 $2\sigma(I)$

Triclinic, P1	$V = 519.89 (4) \text{ Å}^3$
a = 8.1899 (3) Å	Z = 2
b = 8.8361 (4) Å	Mo $K\alpha$ radiation
c = 8.9045 (4) Å	$\mu = 0.30 \text{ mm}^{-1}$
$\alpha = 101.624 \ (2)^{\circ}$	T = 296 K
$\beta = 106.694 \ (1)^{\circ}$	$0.13 \times 0.10 \times 0.08 \text{ mm}$
$\gamma = 114.898 \ (1)^{\circ}$	
Data collection	
Bruker APEXII CCD	2560 independent reflections
diffractometer	2090 reflections with $I > 2\sigma(I)$
9516 measured reflections	$R_{\rm int} = 0.020$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.036$ wR(F²) = 0.102 138 parameters H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$ 2560 reflections

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2045).

References

- Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafiq, M. (2009a). Acta Cryst. E65, o1236.
- Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafique, M. (2009b). Acta Cryst. E65, o1011.
- Bassin, J. P., Shah, V. P., Martin, L., Clegg, W. & Harrington, R. W. (2011). Acta Cryst. E67, o12.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, R. A. & Parvez, M. (2008). Acta Cryst. E64, o1897.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, 04001.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o507 [doi:10.1107/S1600536812002413]

3-(Propan-2-yloxy)-1,2-benzothiazole 1,1-dioxide

M. H. Khan, I. U. Khan, S. Y. Mughal and M. Akkurt

Comment

The title compound (I) was prepared while synthesizing benzisothiazoles from sodium saccharin. Slight increase in the reaction temperature from 333 K to 353 K give rise to the unexpected product instead of a benzisothiazole derivative.

In the title molecule (Fig. 1), the S atom has a distorted tetrahedral coordination geometry, with S1—O1 = 1.4278 (15), S1—O2 = 1.4264 (16), S1—N1 = 1.6493 (14), S1—C1 = 1.7642 (19) Å, O1—S1—O2 = 117.54 (9), O1—S1—N1 = 109.42 (8), O1—S1—C1 = 110.06 (9), O2—S1—N1 = 109.04 (8), O2—S1—C1 = 112.19 (9) and N1—S1—C1 = 96.54 (8)°. The values of the geometric parameters are in agreement with those observed in related compounds (Siddiqui *et al.*, 2007; Bassin *et al.*, 2011; Arshad *et al.*, 2009*a*,*b*; Siddiqui *et al.*, 2008).

Experimental

Sodium saccharin (0.5 g m, 2.439 mmol) was placed in a 50 ml round-bottom flask, and 20 ml of the dried DMF were added to it. The mixture was stirred for 5 min. Then iso-propyl iodide (0.243 ml, 2.439 mmol) was added and the mixture was placed under reflux for 3 h at 353 K. After that, the reaction mixture was poured in ice. The precipitate was filtered, washed with ice-cold water, dried and recrystallized from methanol.

Refinement

All H atoms were positioned geometrically and then treated as riding atoms, with C—H = 0.93 Å (C-aromatic), 0.98 Å (C-methine) and 0.96 Å (C-methyl). $U_{iso}(H) = 1.2U_{eq}(C\text{-aromatic}, C\text{-methine})$, and $1.5U_{eq}(C\text{-methyl})$. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1. View of the molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

3-(Propan-2-yloxy)-1,2-benzothiazole 1,1-dioxide

Crystal data C₁₀H₁₁NO₃S

Z = 2

supplementary materials

$M_r = 225.27$	F(000) = 236
Triclinic, P1	$D_{\rm x} = 1.439 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.1899 (3) Å	Cell parameters from 4072 reflections
b = 8.8361 (4) Å	$\theta = 2.6 - 28.0^{\circ}$
c = 8.9045 (4) Å	$\mu = 0.30 \text{ mm}^{-1}$
$\alpha = 101.624 \ (2)^{\circ}$	T = 296 K
$\beta = 106.694 (1)^{\circ}$	Prism, colourless
$\gamma = 114.898 (1)^{\circ}$	$0.13\times0.10\times0.08\ mm$
$V = 519.89 (4) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	2090 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.020$
graphite	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
φ and ω scans	$h = -10 \rightarrow 10$
9516 measured reflections	$k = -11 \rightarrow 11$
2560 independent reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0509P)^{2} + 0.1198P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2560 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
138 parameters	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.51553 (5)	0.65330 (5)	-0.19102 (5)	0.0414 (1)
01	0.4815 (2)	0.7249 (2)	-0.31926 (16)	0.0625 (5)
O2	0.35943 (17)	0.48322 (17)	-0.21499 (18)	0.0616 (4)
O3	0.85768 (15)	0.97134 (14)	0.24607 (13)	0.0389 (3)
N1	0.58062 (18)	0.80108 (18)	-0.00718 (16)	0.0386 (4)
C1	0.7438 (2)	0.6603 (2)	-0.14202 (18)	0.0347 (4)
C2	0.8040 (2)	0.5704 (2)	-0.2379 (2)	0.0423 (5)
C3	0.9986 (3)	0.6115 (2)	-0.1638 (2)	0.0472 (6)
C4	1.1264 (2)	0.7379 (2)	-0.0035 (2)	0.0470 (6)
C5	1.0640 (2)	0.8267 (2)	0.0923 (2)	0.0402 (5)
C6	0.8694 (2)	0.78493 (19)	0.02064 (18)	0.0325 (4)
C7	0.7613 (2)	0.85598 (19)	0.08991 (18)	0.0333 (4)
C8	0.7475 (2)	1.0339 (2)	0.3210 (2)	0.0418 (5)
C9	0.9032 (3)	1.2032 (3)	0.4722 (2)	0.0561 (6)
C10	0.6175 (3)	0.8887 (3)	0.3664 (3)	0.0610(7)
H2	0.71820	0.48640	-0.34680	0.0510*
H3	1.04400	0.55220	-0.22400	0.0570*
H4	1.25700	0.76420	0.04130	0.0560*
H5	1.15010	0.91140	0.20090	0.0480*
H8	0.66590	1.06130	0.23960	0.0500*
H9A	0.98120	1.17530	0.55260	0.0840*
H9B	0.84010	1.25380	0.52320	0.0840*
H9C	0.98750	1.28810	0.43690	0.0840*
H10A	0.53260	0.77990	0.26810	0.0910*
H10B	0.53830	0.92470	0.40760	0.0910*
H10C	0.69860	0.86850	0.45240	0.0910*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0302 (2)	0.0471 (2)	0.0359 (2)	0.0212 (2)	0.0067 (2)	0.0023 (2)
O1	0.0688 (9)	0.0846 (10)	0.0389 (7)	0.0538 (8)	0.0105 (6)	0.0162 (7)
O2	0.0311 (6)	0.0500 (7)	0.0705 (9)	0.0097 (5)	0.0136 (6)	-0.0036 (6)
O3	0.0344 (5)	0.0448 (6)	0.0316 (5)	0.0210 (5)	0.0112 (4)	0.0054 (4)
N1	0.0319 (6)	0.0444 (7)	0.0358 (7)	0.0225 (6)	0.0112 (5)	0.0055 (5)
C1	0.0307 (7)	0.0378 (8)	0.0358 (7)	0.0185 (6)	0.0146 (6)	0.0110 (6)
C2	0.0446 (8)	0.0425 (8)	0.0403 (8)	0.0232 (7)	0.0208 (7)	0.0095 (7)
C3	0.0496 (9)	0.0551 (10)	0.0560 (10)	0.0350 (8)	0.0335 (8)	0.0211 (8)
C4	0.0359 (8)	0.0632 (11)	0.0544 (10)	0.0311 (8)	0.0231 (7)	0.0256 (9)
C5	0.0316 (7)	0.0491 (9)	0.0385 (8)	0.0205 (7)	0.0138 (6)	0.0149 (7)
C6	0.0303 (7)	0.0364 (7)	0.0336 (7)	0.0179 (6)	0.0154 (6)	0.0133 (6)
C7	0.0319 (7)	0.0345 (7)	0.0326 (7)	0.0177 (6)	0.0130 (6)	0.0099 (6)
C8	0.0444 (8)	0.0458 (9)	0.0352 (8)	0.0281 (7)	0.0147 (7)	0.0062 (7)
C9	0.0649 (12)	0.0509 (10)	0.0402 (9)	0.0286 (9)	0.0160 (8)	0.0048 (8)

supplementary materials

C10	0.0610 (11)	0.0629 (12)	0.0602 (12)	0.0292 (10)	0.0367 (10)	0.0139 (10)
Geometric parar	neters (Å, °)					
S1—O1		1.4278 (15)	C8-	-С9	1.508	3 (3)
S1—O2		1.4264 (16)	C8-	-C10	1.500) (3)
S1—N1		1.6493 (14)	C2-	-H2	0.930)0
S1—C1		1.7642 (19)	C3-	-H3	0.930	00
O3—C7		1.3101 (18)	C4—	-H4	0.930	00
O3—C8		1.477 (2)	C5-	-H5	0.930	00
N1—C7		1.290 (2)	C8—	-H8	0.980)0
C1—C2		1.379 (2)	С9—	-H9A	0.960)0
C1—C6		1.384 (2)	С9—	-H9B	0.960	00
C2—C3		1.385 (3)	С9—	-Н9С	0.960	00
C3—C4		1.377 (2)	C10-	—H10A	0.960	00
C4—C5		1.387 (3)	C10-	—H10B	0.960	00
С5—С6		1.382 (3)	C10-	—H10C	0.960	00
С6—С7		1.478 (3)				
01—S1—O2		117.54 (9)	C1-	-C2—H2	122.0	00
01—S1—N1		109.42 (8)	C3-	-C2—H2	122.0	00
01—S1—C1		110.06 (9)	C2-	-С3—Н3	119.0	00
O2—S1—N1		109.04 (8)	C4—	-С3—Н3	119.0	00
O2—S1—C1		112.19 (9)	С3—	-C4—H4	119.0	00
N1—S1—C1		96.54 (8)	С5—	-C4—H4	119.0	00
С7—О3—С8		117.70 (14)	C4—	-C5—H5	121.0	00
S1—N1—C7		109.19 (13)	C6—	-C5—H5	121.0	00
S1—C1—C2		130.80 (12)	O3–	-C8—H8	110.0	00
S1—C1—C6		106.85 (13)	С9—	-C8—H8	110.0	00
C2—C1—C6		122.32 (17)	C10-	—С8—Н8	110.0	00
C1—C2—C3		116.66 (15)	C8—	-С9—Н9А	109.0	00
C2—C3—C4		121.7 (2)	C8—	-С9—Н9В	109.0	00
C3—C4—C5		121.20 (18)	C8—	-С9—Н9С	109.0)0
C4—C5—C6		117.64 (15)	H9A	—С9—Н9В	110.0	0
C1—C6—C5		120.49 (16)	H9A	—С9—Н9С	109.0	0
C1—C6—C7		109.38 (15)	H9B	—С9—Н9С	110.0	0
С5—С6—С7		130.13 (14)	C8—	-C10—H10A	109.0	0
O3—C7—N1		124.94 (16)	C8–	-C10—H10B	109.0	00
O3—C7—C6		117.08 (15)	C8—	-C10—H10C	109.0	00
N1—C7—C6		117.98 (14)	H10	А—С10—Н10В	110.0	0
O3—C8—C9		105.62 (16)	H10	А—С10—Н10С	109.0	00
O3—C8—C10		108.91 (16)	H10	В—С10—Н10С	110.0	0
C9—C8—C10		113.00 (16)				
01—S1—N1—C	7	-114.21 (14)	C2-	-C1C6C7	-179	.48 (15)
O2—S1—N1—C	7	115.99 (13)	S1—	-C1—C6—C5	-176	.95 (13)
C1—S1—N1—C	7	-0.22 (13)	S1—	-C1C2C3	177.4	4 (14)
01—S1—C1—C	2	-65.92 (19)	С6—	-C1-C2-C3	-0.4	(3)
O2—S1—C1—C	2	66.96 (19)	S1—	-C1C6C7	2.25	(16)
N1—S1—C1—C	2	-179.38 (17)	C2-	-C1C6C5	1.3 (3	3)
01—S1—C1—C	6	112.15 (13)	C1-	-C2-C3-C4	-1.0	(3)

O2—S1—C1—C6	-114.97 (13)	C2—C3—C4—C5	1.5 (3)
N1—S1—C1—C6	-1.30 (13)	C3—C4—C5—C6	-0.5 (3)
C8—O3—C7—N1	4.5 (2)	C4—C5—C6—C7	-179.86 (16)
C8—O3—C7—C6	-175.82 (13)	C4—C5—C6—C1	-0.8 (2)
C7—O3—C8—C10	76.34 (18)	C5—C6—C7—N1	176.34 (17)
C7—O3—C8—C9	-162.02 (15)	C1—C6—C7—O3	177.57 (14)
S1—N1—C7—C6	1.72 (19)	C1—C6—C7—N1	-2.8 (2)
S1—N1—C7—O3	-178.64 (13)	C5—C6—C7—O3	-3.3 (3)

